Tag Archives: drum pulleys

China high quality Magnetic Separator Head Pulleys Permanent Magnetic Drum with Great quality

Product Description

General Description

Magnetic Head Pulleys provide continuous protection against Tramp Iron contamination of both large and fine metal particles. The units provide maximum, continuous protection against tramp iron contamination in the processing of materials such as chemicals, plastics, grains, food products, ceramic, and coal.
1. The drum body can be made from cheap ferrite magnets. The max magnetic strength can be up to 15000GS if made from powerful rare earth magnets. 

2. Surface material is 304 or 316L stainless steel which is in good corrosion resistance. 

3. No electric power required for magnetic field generation.

4. A special design for 2 ends of the pulley is in order to connect with a motor.

5. An automatic separation system can be formed if the pulley works together with the conveyor. 

6. Special requirements can be custom made.

 

Model Bore  Diameter D mm Adapt  Bandwidth B mm Tube Length  L mm Highest  Cylinder Induction Strength GS rube Length L  mm Powder Iron  Removal Powder T/h Weight kg A LI K h b
CTZ-32/40 320 400 500 1500~8000 0.8 10 120 728 1571 100 50 53.5 14
CTZ-32/50 320 500 600 1500~8000 1 15 150 850 1115 115 50 53.5 14
CTZ-40/50 400 500 600 1500~8000 2 20 240 850 1350 115 55 60 16
CTZ-50/50 500 500 600 1500~8000 3.5 30 360 850 1350 115 55 60 16
CTZ-32/65 320 650 750 1500~8000 2 20 210 1000 1350   55 60 16
CTZ-40/65 400 650 750 1500~8000 2.8 30 350 1000 1630 135 55 60 16
CTZ-50/65 500 650 750 1500~8000 4.5 40 420 1000 1630 135 60 64 18
CTZ-63/65 630 650 750 1500~8000 7 45 830 1000 1630

135

90 97 24
CTZ-40/80 400 800 750 1500~8000 8 55 470 1300 1730 175 70 76 20
CTZ-50/80 500 800 950 1500~8000 10 65 600 1300 1730 175 70 76 20
CTZ-63/80 630 800 950 1500~8000 80 800 1300 1300 2000 175 70 76 20
CTZ-80/80 800 800 950 1500~8000 12 100 980 1300 2000 175 90 97 24
CTZ-63/100 630 1000 1150 1500~8000 12 120 1200 1300 2000 175 90 97 24
CTZ-80/100 800 1000 1150 1500~8000 15 140 1300 1500   215 110 119 32
CTZ-100/120 1000 1200 1400 1500~8000 20 180 1580 1750 2270 255 130 140 36
CTZ-125/140 1250 1400 1600 1500~8000 30 250 1950 2000 2555 275 150 161 40

Inlet and outlet sizes and specifications can be customized according to customer requirements.

 

Options

  • Crowned face

  • Lagging

  • Choice of the fixed shaft, fixed bore hubs, or taper lock hubs

  • Rare Earth magnets

 

Application

They always are placed at the head of the conveyor belt to separate iron particle, iron scrap, tramp iron and other ferromagnetic objects from more bulk dry material flow such as iron ore, grain, sand, gravel, plastics, wood, waste, cullet, rubber, etc

Package

Calculate the ideal mechanical advantage of pulleys

The basic equations for pulleys can be found in this article. It will also cover the different types of pulleys, the ideal mechanical advantages of pulleys, and some common uses of pulley systems. Read on to learn more! After all, a pulley is a simple mechanical device that changes the direction of a force. Learn more about pulleys and their common uses in engineering.
pulley

pulley basic equation

Pulleys work the same way as gravity, so they should withstand similar forces. Newton’s laws of motion can be used to calculate the forces in a pulley system. The second law of motion applies to forces and accelerations. Similar to this is Newton’s third law, which states that the directions of forces are equal and opposite. The fourth law dictates the direction of force. The Fifth Law states that tension is in equilibrium with gravity.
A pulley is a simple mechanism that transmits force by changing direction. They are generally considered to have negligible mass and friction, but this is only an approximation. Pulleys have different uses, from sailboats to farms and large construction cranes. In fact, they are the most versatile mechanisms in any system. Some of their most common applications and equations are listed below.
For example, consider 2 masses m. Those of mass m will be connected by pulleys. The static friction coefficient of the left stop is ms1, and the static friction coefficient of the right stop is ms2. A no-slip equation will contain multiple inequalities. If the 2 blocks are considered to be connected by a pulley, the coefficient of kinetic friction is mk. In other words, the weight of each block carries the same mass, but in the opposite direction.

Types of pulleys

A pulley is a device used to pull and push objects. Pulley systems are ropes, cables, belts or chains. The “drive pulley” is attached to the shaft and moves the driven pulley. They are available in a variety of sizes, and the larger they are, the higher the speed of power transmission. Alternatively, use small pulleys for smaller applications.
Two-wheel pulleys have 2 mechanical advantages. The greater the mechanical advantage, the less force is required to move the object. More wheels lift more weight, but smaller pulleys require less force. In a two-wheel pulley system, the rope is wound around 2 axles and a fixed surface. As you pull on the rope, the shafts above slowly come together.
Compound pulleys have 2 or more rope segments that are pulled up on the load. The mechanical advantage of compound pulleys depends on the number of rope segments and how they are arranged. This type of pulley can increase the force by changing the direction of the rope segment. There are 2 main types of pulleys. Composite pulleys are most commonly used in construction. The ideal mechanical advantage of pulleys is 2 or more.
Construction pulleys are a basic type. They are usually attached to wheel rails and can be lifted to great heights. Combinations of axes are also common. Construction pulleys can be raised to great heights to access materials or equipment. When used in construction, these pulleys are usually made of heavy materials such as wood or metal. They are secured with ropes or chains.

The ideal mechanical advantage of pulleys

The pulley system is a highly complex system with high mechanical advantages. Use a single pulley system to reduce the force required to lift an object by cutting it in half. The mechanical advantage increases as you add more pulleys, such as 6 or seven. To calculate the mechanical advantage of a pulley system, you need to count the number of rope segments between the pulleys. If the free end of the rope is facing down, don’t count it. If it’s facing up, count. Once you have your number, add it up.
The required mechanical advantage of a pulley is the number of rope segments it has to pull the load. The more rope segments, the lower the force. Therefore, the more rope segments the pulley has, the lower the force. If the rope segments are four, then the ideal mechanical advantage is four. In this case, the composite pulley quadrupled the load force.
The ideal mechanical advantage of a pulley system is the sum of the mechanical force and the force required to lift the load at its output. Typically, a single pulley system uses 2 ropes, and the mechanical force required to lift the load is multiplied by the 2 ropes. For a multi-pulley system, the number of ropes will vary, but the total energy requirement will remain the same. The friction between the rope and pulley increases the force and energy required to lift the load, so the mechanical advantage diminishes over time.
pulley

Common uses of pulley systems

A pulley system is a simple mechanical device typically used to lift heavy objects. It consists of a rotating wheel attached to a fixed shaft and a rope attached to it. When the wheel moves, the force applied by the operator is multiplied by the speed of the pulley, and the force is multiplied by the weight of the object being lifted. Common uses for pulley systems include pulling, lifting, and moving heavy objects.
The oil and petroleum industries use pulley systems in a variety of applications. Most commonly, pulleys are used in drilling operations and they are installed on top of the rig to guide the cable. The cable itself is attached to 2 pulleys suspended in the derrick, where they provide mechanical energy to the cable. Using a pulley system in this application provides the force needed to move the cable safely and smoothly.
The main advantage of the pulley system is that it minimizes the force required to lift an object. The force used to lift the object is multiplied by the desired mechanical advantage. The more rope segments, the lower the force required. On the other hand, a compound pulley system can have many segments. Therefore, a compound pulley system can increase the force a worker can exert on an object.
Safety Precautions to Take When Working on Pulley Systems

There are many safety precautions that should be observed when working on a pulley system. The first is to wear proper protective gear. This includes hard hats that protect you from falling objects. Also, gloves may be required. You should limit the amount of movement in the penalty area, and you should also keep the area free of unnecessary people and objects. Also, remember to wear a hard hat when working on the pulley system.
Another important safety precaution when working on a pulley system is to check the Safe Working Load (SWL) of the pulley before attaching anything. This will help you understand the maximum weight the pulley can hold. Also, consider the angle and height of the pulley system. Always use safety anchors and always remember to wear a hat when working on a pulley system.
Safe use of chain hoists requires training and experience. It is important to read the manufacturer’s manual and follow all safety precautions. If you’re not sure, you can actually inspect the hoist and look for signs of damage or tampering. Look for certifications for sprocket sets and other lifting accessories. Look for the Safe Working Load (SWL) marking on the chain hoist.
pulley

Example of a pulley system

Pulley systems are often used to lift items. It allows you to reduce the effort to lift and move the load by applying force in 1 direction. Pulley systems can be built and modeled to fit any type of project. This resource focuses on pulley systems and is designed to support the new GCSEs in Engineering, Design and Technology. There are also many examples of pulley systems suitable for various applications.
In the study, participants who read easy text took longer to manipulate the pulley system than those who read challenging text. In general, this suggests that participants with prior scientific experience used their cognitive abilities more effectively. Additionally, students who read simple texts spent less time planning the pulley system and more time on other tasks. However, the study did show that the time required to plan the pulley system was similar between the 2 groups.
In everyday life, pulley systems are used to lift various objects. Flagpoles are 1 of many pulley systems used to raise and lower flagpoles. They can also be used to raise and lower garage doors. Likewise, rock climbers use pulleys to help them ascend and descend. The pulley system can also be used to extend the ladder.

China high quality Magnetic Separator Head Pulleys Permanent Magnetic Drum   with Great qualityChina high quality Magnetic Separator Head Pulleys Permanent Magnetic Drum   with Great quality